Environmental Issues that Affect health
Chemical Hazards, and their Adverse Health Effects
If one includes tobacco smoke as an environmental hazard then it probably represents the single biggest known airborne chemical risk to health, whether measured in terms of death rates or ill-health (from lung cancer, other lung disease such as chronic bronchitis and emphysema, and disease of the heart, especially, and of blood vessels and other parts of the body). To a much lesser degree of risk, these adverse effects apply to non-smokers exposed passively to sidestream tobacco smoke.General airborne pollution arises from a variety of causes but can usefully be subdivided into pollution from combustion or from other sources. The image shows the silhouette of a power station - an important source of airborne products of combustion.
Combustion of coal and other solid fuels can produce smoke (containing polycyclic aromatic hydrocarbons - PAH) and sulphur dioxide besides other agents such as those also produced by:
Combustion of liquid petroleum products which can generate carbon monoxide, oxides of nitrogen and other agents. Industry and incineration can generate a wide range of products of combustion such as oxides of sulphur and nitrogen, polycyclic aromatic hydrocarbons, dioxins etc. Combustion of any fossil fuel generates varying amounts of particulate matter. It also adds to the environmental burden of carbon dioxide - an important "green house" gas but in these low concentrations it does not affect human health directly. Combustion of fuel can also generate hazardous substances in other ways, besides by chemical oxidation, such as by liberating benzene (from the "cracking" of petrol) or lead (from leaded petrol). Some of the primary pollutants such as nitrogen dioxide can, under the influence of UV light generate secondary pollutants notably ozone (an allotrope of oxygen).Find out more about air quality in relation to these substances.
Undoubtedly tens of thousands of deaths have resulted from acute pollution episodes (e.g. the smogs in large cities in the early 1950s). Nowadays some people e.g. asthmatics can be adversely affected by excursions in levels of urban air pollution (notably ozone) in some major cities. What is still unclear is the extent to which urban airborne pollution in the majority of cities complying with current air quality guidelines, contributes to ill health, i.e. whether the air quality guidelines are stringent enough, to protect all the population.
Health effects of concern are asthma, bronchitis and similar lung diseases, and there is good evidence relating an increased risk of symptoms of these diseases with increasing concentration of sulphur dioxide, ozone and other pollutants. Moreover, there is increasing evidence to suggest that pollution from particulate matter at levels hitherto considered "safe" is associated with an increased risk of morbidity and mortality from cardiopulmonary disease especially in people with other risk factors (such as old age, or heart and lung disease). These concerns are the subject of a great deal of research throughout the world. Although high occupational exposures to exhaust especially from diesel, and to benzene does increase the risk of some cancers, reliable direct evidence of an increased to cancer risk to the population at large from the lower levels to which they are exposed is lacking.
Incineration can also generate hazardous substances if substances not best suited for disposal by incineration are "disposed" of in this way or if incineration is carried out at too low a temperature (for example this may generate dioxins).
Products of combustion and other harmful airborne pollutants can also arise within the home. Thus nitrogen dioxide generated by gas fires or gas cookers can contribute to an increased respiratory morbidity of those living in the houses. Certain modern building materials may liberate gases or vapours such as formaldehyde at low concentration but which might provoke mild respiratory and other symptoms in some occupants. Modern building standards for asbestos in buildings are such that the resulting airborne fibre concentrations are so small as not to present any risk at all of asbestosis. However some estimates suggest that perhaps one extra death per year might result in the UK from asbestos related cancer as a result of non-occupational exposure in buildings. The image shows an asbestos body i.e. an asbestos fibre which has been coated by ferruginous protein during its residence within the human lung.
Large scale industrial releases with serious acute effects are fortunately rare but you might recollect some events such as in Bhopal (India). Various smaller scale events occur such as leaks from road tankers, or fires in warehouses and factories.Special local environmental exposures can arise for example in communities exposed to drifting pesticide sprays containing say, organophosphates. Some natural phenomena such as volcanic eruptions can present serious risks to health. Fortunately they are rare but can be catastrophic.
Water can be an important source of chemical hazards. It can leach lead from pipes especially if the water is soft. There is good epidemiological evidence that this can have a relatively small but measurable harmful effect especially on neurological function even at levels hitherto considered "acceptable". Other adverse effects can arise from chemicals added to the water.
Chlorination of water has probably saved millions of lives (see ). Some concern has been raised about possible increased cancer risks in association with chlorinated water but there is as yet no proof that a causal association between the two exists. Fluoride added to water reduces the risks of caries but can also have unwanted effects such as mottling of the teeth.
Nitrate in water usually arising from fertiliser leaching (natural or artificial) can increase the risk of methaemoglobinaemia ('blue babies') in bottle fed infants but this is extremely rare. Although pesticides can and do leach into water, there is no evidence that the current standards for water quality are inadequate in this respect, but most standards are based on evidence other than human epidemiology which in this context is extremely difficult to conduct.
Beyond the point of supply further problems in drinking water quality may result. Thus for example water tanks containing lead may increase the burden of this metal in the water, while water softeners may increase its sodium content (can be harmful for bottle fed infants).
Deposition of solid hazardous waste can result in harmful substances leaching into water supplies, becoming airborne or being swallowed or otherwise...