Population Ecology Problems

thumbnail

Abstract

During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.

Additional publication details

Publication type: Article Publication Subtype: Journal Article Title: Bayesian data analysis in population ecology: motivations, methods, and benefits Series title: Population Ecology DOI: Volume: 58 Issue: 1 Year Published: 2016 Language: English Publisher: Springer Japan Publisher location: Tokyo, Japan Contributing office(s): Wetland and Aquatic Research Center Description: 14 p.

What is Ecological Problems?

Ecological Problems

Top Ten environmental Problems

Local environmental Problems